Tethersol Protocol: A Comprehensive
Technical Paper

Document Version: 3.2

Publication Date: September 6, 2025

Abstract

This document serves as an in-depth technical reference for the Tethersol protocol, a
decentralized system built on the Solana blockchain for the tokenization of real-world assets
(RWAs). This iteration provides a comprehensive overview of the system's architecture,
including its hybrid on-chain/off-chain design, a detailed breakdown of the smart contract
suite, on-chain data structures, and end-to-end workflows. We delve into specific
implementation details, security measures, and future evolutions. This paper is intended to
provide developers, security auditors, system architects, and stakeholders with the necessary
insights to build, audit, or integrate with the protocol.

1.0 System Philosophy & Design Goals

Tethersol addresses the fundamental challenges of illiquidity, high entry barriers, and the trust
gap in RWA tokenization by synthesizing RWA stability with DeFi efficiency. Our architecture is
built on five core pillars:

Security: We emphasize fund safety through rigorous security audits, a public bug
bounty program, and secure on-chain patterns such as Program Derived Accounts
(PDAs) and reentrancy guards.

Scalability: We utilize Solana's Sealevel runtime and Proof-of-History (PoH) consensus
to support high throughput (e.g., 50,000 TPS) and low transaction costs ($<0.00025 per
transaction), making micro-transactions like daily yield distributions economically viable.
Decentralization: We transition progressively from a multi-signature controlled entity to
a fully community-governed DAO.

Composability: We adhere to Solana Program Library (SPL) standards to enable
seamless integration with other DeFi protocols (e.g., Serum, Raydium), allowing $TRSOL
to be used as collateral in the broader DeFi ecosystem.

Legal Compliance: We ensure a robust off-chain legal framework, including the use of
bankruptcy-remote SPVs, to legally bind the on-chain tokens to their real-world
counterparts.

2.0 Core Protocol Architecture

The Tethersol architecture employs a hybrid model that tightly synchronizes off-chain legal
assets with on-chain transparency and functionality. The system is designed to minimize the
trust required in the off-chain processes while using the blockchain to enforce a transparent
and immutable ledger of ownership and value.

2.1 On-Chain Layer (Solana)

The on-chain layer is a suite of modular programs written in Rust using the Anchor framework,
providing a secure and developer-friendly environment.

Program Derived Accounts (PDAs): All protocol funds are held in program-controlled
PDAs, eliminating the need for private keys and mitigating custodial risk. For example, the
staking vault PDA is deterministically derived from the program ID and a unique seed.
Solana Account Model: We utilize rent-exempt accounts for persistent state storage,
with efficient serialization via Borsh.

2.2 Off-Chain Layer

This layer handles the physical and legal aspects of the assets.

Legal & Asset Management: Assets are owned and managed by professional firms,
each held within a separate, bankruptcy-remote SPV (e.g., a Delaware Series LLC). The
SPV's legal ownership shares are then tokenized.

Data Verification & Oracle Bridge: Independent auditors verify the financial
performance of the assets (e.g., Net Operating Income). This data is securely signed and
pushed to a decentralized oracle network. The on-chain protocol validates this signed
data before triggering any financial actions.

3.0 Smart Contract Suite: A Deep Dive

The Tethersol protocol consists of a set of interconnected Solana programs, each serving a
specific and auditable purpose. These programs communicate via Cross-Program
Invocations (CPls) to execute complex workflows securely.

3.1 The Tethersol Staking Program

This is the primary user-facing program. It manages the staking and unstaking of $TRSOL
tokens and facilitates the claiming of yield. The program's state is stored in two key accounts:
StakingVaultState (a global account) and StakerAccount (a per-user account).

e initialize_vault: A one-time instruction to initialize the protocol's central staking vault and
state accounts, controlled by a PDA.

e deposit: Allows a user to transfer $TRSOL tokens into the staking vault. It updates

the
user's StakerAccount and the global StakingVaultState. The function ensures the
transaction is an atomic operation, updating both accounts before the CPI is completed.

e withdraw: Enables a user to unstake and retrieve their $TRSOL tokens, subject to
any potential lock-up periods or governance decisions.

e claim_yield: This function is stateless and permissionless. It calculates and distributes a
user's pro-rata share of the collected stablecoin yield from the Yield Distributor PDA. This
function relies on a CPI to the SPL Token program to perform the transfer. The yield
calculation is based on the formula:

Y user=(S_user/S_total)timesA yield
Where:

Y _user is the yield to be claimed by the user.

S_user is the user's staked balance.

S total is the total staked balance in the vault.

A_yield is the total available yield in the Yield Distributor PDA.

o

o O O

After the transfer, the last_claimed_timestamp is updated to prevent double-claims of the
same yield distribution.

use anchor_lang::prelude::*;
use anchor_spl::token::{Token, TokenAccount, transfer};
use std::convert::TryInto;

#[program]
pub mod tethersol staking {
use super::*;

#[account]

pub struct StakingVaultState {
pub total staked balance: u64,
pub bump: u8,

#[account]
#[derive(Default)]
pub struct StakerAccount {
pub owner: Pubkey,
pub staked_balance: u64,
pub last claimed timestamp: i64,
pub bump: u8,

fn initialize vault(ctx: Context<InitializeVault>) -> Result<()> {
let vault_state = &mut ctx.accounts.vault_state;
vault state.total staked balance = 0;

0k(())

fn deposit(ctx: Context<Deposit>, amount: u64) -> Result<()> {

let cpi_accounts = Transfer {
from: ctx.accounts.user tsol account.to account_info(),
to: ctx.accounts.vault_tsol account.to_account_info(),
authority: ctx.accounts.user authority.to account info(),
}s
let cpi program = ctx.accounts.token_program.to account_info();
transfer(CpiContext: :new(cpi_program, cpi_accounts), amount)?;

let staker_account = &mut ctx.accounts.staker account;
staker_account.staked_balance =

staker_account.staked balance.checked add(amount).unwrap();
ctx.accounts.vault_state.total staked balance =

ctx.accounts.vault state.total staked balance.checked add(amount).unwrap();

Ok(())

pub fn claim yield(ctx: Context<ClaimYield>) -> Result<()> {
let staker = &mut ctx.accounts.staker_ account;
let vault state = &ctx.accounts.vault state;
let yield vault = &ctx.accounts.yield vault;
let yield token_ program = &ctx.accounts.yield token_ program;

let user_share = (staker.staked_balance as f64) /
(vault state.total staked balance as f64);
let available_yield = yield vault.amount as f64;
let yield to claim = (user_share * available yield) as u64;

let bump =
*ctx.accounts.yield vault.to _account info().try borrow data()?[©];
let seeds = &[
b"yield vault".as ref(),
&[bump],
1
let signer_seeds = &[&seeds[..]];
let cpi_accounts = Transfer {
from: ctx.accounts.yield vault_token_account.to_account_info(),
to: ctx.accounts.user yield account.to account_info(),
authority: ctx.accounts.yield vault.to_account_info(),
s
let cpi_program = yield token_program.to_account_info();
transfer(CpiContext::new _with_signer(cpi_program, cpi_accounts,
signer_seeds), yield to_claim)?;

staker.last claimed_timestamp = Clock::get()?.unix_timestamp;

Ok(())

3.2 The Tethersol Governance Program

The core of the DAQ, this program manages the lifecycle of all on-chain proposals and voting

using staked $TRSOL. It works in conjunction with a separate Timelock program to enforce
a delay before execution.

e create_proposal: A user with a minimum staked amount of $TRSOL can submit a
proposal. The instruction includes a serialized payload containing the actions to be
executed upon a successful vote.

e cast_vote: Stakers can vote 'For' or 'Against' a proposal. The voting power is based on
the user's staked $TRSOL at the time the proposal was created.

e queue_proposal: When a proposal passes, it is moved to a queue within the Timelock
program, starting a mandatory waiting period.

e execute_proposal: After the Timelock period expires, anyone can trigger the execution
of the proposal's instructions via a CPI.

3.3 The Tethersol Yield Distributor Program

This is a permissioned program that acts as the bridge between the oracle network and the
staking vault. It is responsible for the secure and verifiable distribution of yield.

e ingest_oracle_data: A privileged function that validates signed data from the oracle
network. It checks the signature and the integrity of the data before using it to calculate
the amount of stablecoin to distribute.

e distribute_yield: Queues the calculated stablecoin amount from the protocol treasury
PDA to the Yield Distributor PDA. This amount is then made available for users to claim.

3.4 The Tethersol Asset Registry Program
This program provides an immutable, on-chain record for each tokenized RWA. It links the
on-chain representation (SPL token) to the off-chain legal documents and metadata.

e register_asset: A one-time, permissioned function that creates an on-chain account for
a new RWA. The account's data includes a hash of the legal documents and a link to their
storage on a decentralized file system like IPFS.

3.5 The Tethersol Vesting Program

This program enforces the vesting schedules for the team, advisors, and treasury. This
ensures that tokens are released according to a predetermined schedule and are not
immediately available for sale.

e create_vesting_schedule: Initializes a vesting account for a specific beneficiary,
defining the cliff duration, total duration, and total amount of tokens to be released.

e claim_vested_tokens: Allows the beneficiary to claim any tokens that have been
released from their vesting schedule.

3.6 The Tethersol Lending Program (Future Implementation)

This program will allow users to borrow stablecoins against their staked $TRSOL or
other tokenized assets.

e create_loan: Creates a loan account for a user, locking their collateral in a PDA. The loan
parameters (e.g., loan-to-value ratio, interest rate) are defined.
repay_loan: Allows a user to repay their loan and retrieve their locked collateral.
liquidate_loan: If a loan's collateral falls below a predefined threshold, this function
allows liquidators to repay the loan and seize the collateral.

4.0 Security and Risk Mitigation

Security is multi-layered and paramount.

Attack Vector Mitigation Strategy

Reentrancy Attack All sensitive state changes (e.g., updating
balances) are performed before any
cross-program invocations (CPIs) that
transfer tokens out of the protocol. We use
Anchor's built-in #[payable] and
reentrancy guards.

Oracle Manipulation The protocol relies on a multi-oracle
fallback system and on-chain price
bounds. If the oracle feed provides data
outside of a predefined range, the
YieldDistributor program will revert the
transaction.

Malicious Governance Proposals A Timelock contract queues all passed
proposals for a minimum of 48-72 hours
before they can be executed. This provides
the community and security auditors ample
time to detect and respond to any
malicious proposals.

Admin Key Compromise All administrative keys start as a multi-sig
wallet. Over time, control of these keys is
progressively migrated to the DAO's
Timelock program, making the protocol
immutable and censorship-resistant.

Asset Performance Risk The DAO and a dedicated asset committee

will implement a diversification strategy
across different asset classes (real estate,
agriculture) and geographies to minimize
risk. All assets are insured, and this
information is verifiable on-chain via the
TethersolAssetRegistry.

Front-running The protocol is designed to minimize
opportunities for front-running. The
claim_yield function, for example, is not
time-sensitive, so users cannot be
out-competed to claim yield.

5.0 Future Development

Building on the foundation laid in Phase 2, we have a clear vision for the protocol's evolution:

e Native Lending Protocol: We will launch a native lending and borrowing platform.
Tokenized asset shares will serve as a new class of on-chain collateral, allowing users to
unlock liquidity against their assets. This will be a major step in expanding the utility of
RWAs in DeFi.

e Cross-Chain Interoperability: Using bridge solutions like Wormhole or LayerZero, we
will enable the seamless transfer of $TRSOL to other major blockchain ecosystems (e.g.,
Ethereum, Base), expanding the token's utility and liquidity. This will allow the protocol to
tap into new markets and user bases.

e Advanced Features: We will explore the use of zero-knowledge proofs (zk-proofs) to
enable private yield claims and other privacy-preserving features. We will also investigate
Al-driven asset selection and portfolio management tools for the DAQ.

e Token Upgrades: We will migrate the $TRSOL token to the SPL Token-2022 standard
to take advantage of new features such as transfer hooks and confidential transfers.

6.0 Conclusion

The Tethersol protocol pioneers the RWA-DeFi integration, offering a secure, scalable, and
legally-compliant platform for tokenized assets. This technical paper provides a detailed
blueprint for a more equitable financial future where tangible assets can fuel decentralized
economies.

	
	
	Tethersol Protocol: A Comprehensive Technical Paper
	
	
	Abstract
	1.0 System Philosophy & Design Goals
	2.0 Core Protocol Architecture
	2.1 On-Chain Layer (Solana)
	2.2 Off-Chain Layer

	3.0 Smart Contract Suite: A Deep Dive
	3.1 The Tethersol Staking Program
	
	3.2 The Tethersol Governance Program
	3.3 The Tethersol Yield Distributor Program
	3.4 The Tethersol Asset Registry Program
	3.5 The Tethersol Vesting Program
	3.6 The Tethersol Lending Program (Future Implementation)

	4.0 Security and Risk Mitigation
	
	5.0 Future Development
	6.0 Conclusion

